ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Sc modification induced short-range cation ordering and high microwave dielectric performance in ZnGa₂O₄ spinel ceramics

Xiaochi Lu^{a,b}, Bin Quan^c, Kailai Zheng^{a,e}, Peng Chu^a, Jian Wang^a, Guangxu Shen^a, Qitu Zhang^d, Feng Xu^{a,*}

- a College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
- ^b National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, PR China
- ^c Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
- ^d College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China
- e State Key Lab. of Millimeter Wayes. Southeast University, Naniing 210096, PR China

ARTICLE INFO

Article history: Received 7 November 2020 Received in revised form 21 March 2021 Accepted 28 March 2021 Available online 8 April 2021

Keywords: ZnGa₂O₄ Spinel Sc³⁺ modification Bond vibration Microwave dielectric properties

ABSTRACT

Sc³⁺ (0,0.1,0.3,0.5,0.7 mol%) modified ZnGa₂O₄ (abbreviated Sc-ZGO) ceramics were synthesized by solid-state method. The relationship between microwave dielectric performance and bonds vibration has been systematically investigated. With Sc³⁺ modification, the ε_r of Sc-ZGO keeps steady (~10). While τ_f values (increasing from -71 ppm/°C to -39 ppm/°C) show linear correlation with Sc³⁺ concentration. And Qxf values climb up to a maximum value and then ramp down. The Qxf value of Sc-ZGO increased by almost 45% compared with normal spinel ZnGa₂O₄ ceramics. The enhancement of τ_f and Qxf on Sc modified ZnGa₂O₄ can be attributed to higher densification, however, further analysis elucidated that short-range cation ordering degree is another governing factor. The influence of Sc³⁺ modification on ZnGa₂O₄ bonds vibration has been discussed in detail. SSc-ZGO sintered at 1350 °C for 2 h exhibits the best microwave dielectric properties: ε_r = 9.9, Qxf = 124,147 GHz, $\tan\delta$ = 7.98 × 10⁻⁵, and τ_f = -56 ppm/°C (@9.9 GHz).

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Spinel-type compounds AB_2O_4 have been extremely investigated in science and technical fields such as phosphor [1,2], catalysts [3,4], semiconductors [5,6], superconductors [7,8] and microwave dielectric materials [9–12]. Among these applications, microwave dielectric materials in high frequency (5G) is one of the most important applications with wide investigations. The framework of Spinel-type compounds has close packed tetrahedral (AO_4 or BO_4) and octahedral (AO_4 or AO_6). This type of crystal structure has different variabilities in cation ordering such as common spinel (AB_2O_4), inverse spinel (AB_2O_4) and mixed-type spinel. So far, spinel structured ceramics for high frequency application include AD_2O_4 ($AD_$

However, the development and application of M_2SnO_4 are limited by large negative τ_f and low $Q \times f$. As for M_2SiO_4 , the critical

* Corresponding author.

E-mail address: feng.xu@njupt.edu.cn (F. Xu).

synthesis condition limited its application. Although the $Q \times f$ of MAl₂O₄ can exceed to 60,000 GHz, its sintering temperature is relatively high. Cause most of the spinel ceramics need high sintering temperature for about 1600 °C. Considering environment friendly materials, explorations in lower sintering temperature by materials design and composition engineering are increased. Compared with M₂SnO₄, M₂SiO₄ and MAl₂O₄ (M=Zn, Mg), MGa₂O₄ have good microwave dielectric properties, lower sintering temperature and a wide sintering temperature region. Therefore, MGa₂O₄ (M=Zn,Mg) materials are promising candidates for high frequency (5G) applications.

For MGa_2O_4 (M=Zn, Mg) materials, $ZnGa_2O_4$ is normal spinel and $MgGa_2O_4$ is mixed-type spinel. Thus, the crystal structure of $MgGa_2O_4$ is more complexed than the former one and the mixed proportion varied with synthesis conditions which brings more difficulties to reveal relationships among synthesis conditions, modification, crystal structure and microwave dielectric properties. Hence, $ZnGa_2O_4$ with normal spinel structure got our attention. It is reported that $ZnGa_2O_4$ possesses lower sintering temperature (1400 °C), large sintering range (1300 °C –1500°C) with excellent dielectric performance ($\varepsilon_r = 9.8$, Qxf = 83,000 GHz, $\tau_f = -71$ ppm/°C)

[10]. However, relatively large negative τ_f (-71 ppm/°C), and the relatively large $\tan\delta$ (19 ×10⁻⁵) are two difficulties in the application of ZnGa₂O₄ microwave dielectric ceramics.

For microwave dielectric materials with high density and good crystallinity, the initial temperature coefficient at resonant frequency (τ_f) can be got through formula (1) as follows [24]:

$$\tau_f = -\left(\frac{1}{2}\tau_\varepsilon + \frac{1}{2}\tau_\mu + \alpha_L\right) \tag{1}$$

Thus, the permittivity coefficient (τ_e) , permeability coefficient (τ_μ) , coefficient of thermal expansion (α_L) are three considerable factors to determine τ_f . In our previous study, TiO₂ was applied to form TiO₂-ZnGa₂O₄ composite ceramics to adjust τ_e , and through this method near zero τ_f was obtained [19]. Another study applied Mn to modified the τ_μ of ZnGa₂O₄ and it successfully shifted τ_f from -71 ppm/°C to -12 ppm/°C [20].

To achieve a high signal noise ratio, resonators should possess higher $Q \times f$. 1/Q is the total loss $(\tan \delta)$ and can be figured out through formula 2 [25]. $1/Q_d$, $1/Q_c$, $1/Q_r$, and $1/Q_{ext}$ are related to dielectric, conductor, radiation and external power loss, respectively.

$$\frac{1}{Q} = \frac{1}{Q_d} + \frac{1}{Q_c} + \frac{1}{Q_r} + \frac{1}{Q_{ext}}$$
 (2)

Classically, materials with close packed, ordered structure, high density, good crystallinity and fine morphology possess low $\tan\delta$ because of lower vibration $\tan\delta$, grain boundary $\tan\delta$ and impurity loss. In our previous study, Cr^{3+} doped ZnGa_2O_4 obtain excellent microwave dielectric properties due to the higher density and higher short-range cation ordering [21]. Cu^{2+} was also applied to form Cu-ZGO solid solutions and obtain mixed spinel structure, the higher density and higher short-range cation ordering contribute to the higher Qxf [22,23].

Rare earth (RE) elements possess special atomic structure, physical and chemical properties which is mainly caused by their 4f electron configuration. The special structure of RE elements leads to special optical, electrical, magnetic and thermal properties. And the application of RE elements in ceramic materials has made great progress. Thus, RE modification have been applied extensively to control microstructures, crystal structures and dielectric properties, especially in piezoelectric ceramics and microwave dielectric ceramics like PZT [26], Ca/BaO-Ln₂O₃-TiO₂ [27] and CaO-Ln₂O₃-TiO₂-Li₂O [28]. The most used RE elements are Nd, Y, Sm and Ce, however, Sc has not yet been studied in this respect.

Based on the above discussion, Sc modified ZnGa₂O₄ (abbreviated Sc-ZGO) were designed to achieve higher Q×f and near zero τ_f . As a result, we obtain a low $\varepsilon_r \sim 10$ at 13 GHz, with sintering temperature at 1350 °C which is lower than most of spinel ceramics without sintering additives. The microwave dielectric performance of Sc-ZGO, demonstrating low tan δ , and a near zero τ_f was achieved. Thus, it can provide guidance on the enhancement of spinel-type microwave dielectric ceramics properties.

2. Materials and methods

2.1. Sample preparation

Solid state reactions were adopted to prepare Sc-ZGO with Sc content range from 0.1 mol to 0.7 mol%. According to the Sc-ZGO chemical formula, analytical grade Sc_2O_3 , Ga_2O_3 , and ZnO were weighted and ball milled in polyethylene jars for one day with ethanol. Then the mixtures were dried at $80\,^{\circ}\text{C}$ for one day and calcined at $1000\,^{\circ}\text{C}$ for 2 h. The green pellets with diameter~13 mm and thickness ~6 mm, was obtained under an uniaxial pressure ~75 MPa for 1 min, and then sintered at $1300-1450\,^{\circ}\text{C}$ for 2 h in high-temperature electric furnace (KSX4–16, Allfine, Wuxi, China) to obtain ceramic pellets.

2.2. Characterization

The micromorphology of Sc-ZGO was detected by a scanning electron microscope (SEM) (Hitachi SU8010, Japan), Archimedes' method was applied to measure the density of the given samples. Phase composition and evolution of Sc-ZGO ceramics were identified via X-ray diffraction (XRD) (Rigaku Cu, RigakuD/Max 2500, Japan), XRD refinement was applied using the General Structure Analysis System (PC-GSAS) software, and Raman spectroscopy (Raman) (HR800, Horiba Labram, 514 nm He-Cd laser, 20 mW laser power). The high-resolution TEM (HRTEM) images and selected-area electron diffraction (SAED) patterns were achieved at 200 kV using a transmission electron microscope (JEM-2100, JEOL). X-ray photoelectron spectrometer (XPS) (ESCALAB 250, Thermo Fisher, UK) was employed to collect XPS data to reveal elements chemical status with Al-Kα as its X-ray source. The microwave dielectric performance: ε_r , $\tan \delta$, f and τ_b were measured using the cavity resonator method [29] via a Lightwave Component Analyzer (Hewlett Packard 8703 A, 1550 nm/130 MHz to 20 GHz). A NICOLET 5700 FT-IR spectrometer (Thermo, America) were applied to get the Fourier transform infrared (FT-IR) spectrum.

3. Results and discussion

3.1. Microstructure of Sc-ZGO ceramics

The microstructures and relative density of Sc-ZGO ceramics sintered at 1350 °C for 2 h are shown in Fig. 1(a-e), and (f) shown the EDS spectrum of 5Sc-ZGO. As the Sc modification content increasing, the average size varied slightly, however, the relative density is different. It first increased with increasing Sc³⁺ content from 0.1 to 0.7 mol% and achieved the highest density at 5Sc-ZGO, then decreased at 7Sc-ZGO. Thus, Sc³⁺ modification also improves the densification of ZnGa₂O₄. A relative density of 97% is reachable with Sc³⁺ content ranging from 0 to 0.7 mol%.

3.2. Crystal structure and cation distribution

The XRD patterns of Sc-ZGO ceramics with Sc³⁺ modification content ranging from 0 to 0.7 mol% are shown in Fig. 2(a). Fig. 2(b) is the enlarged XRD patterns at 2θ = 35.2–36.0. All the samples can be indexed as pure spinel structured ZnGa₂O₄ (JCPDS card no. 86–0413). Due to the Sc modification, the main diffraction peak (~35.6°) shifts to higher diffraction degree which reveals lattice contraction in the Sc-ZGO crystals.

Fig. 2(c) shows an exemplar HRTEM image together with the SAED pattern in the inset, taken from 5Sc-ZGO. The lattice spacing is 0.48 nm which corresponds to the spacing between the (111) planes of spinel structured $\rm ZnGa_2O_4$. SAED pattern can provide further insight into the ceramic crystal structure. It can be indexed as a spinel structure with Face-Centered Cubic symmetry and a zone axis of [110]. The sharp diffraction spots in the SAED pattern, indicating Sc-ZGO possesses good crystallinity.

Confirming by previous XRD analysis, the higher Sc^{3+} concentration means the larger lattice contraction. Fig. 2(d) shows XRD refinement of 7Sc-ZGO. It confirms that 7Sc-ZGO possesses pure spinel structure. Thus, all of these evidences indicate that Sc-ZGO (Sc^{3+} content from 0 to 0.7 mol%) is a solid solution.

XPS spectrum of 5Sc-ZGO sintered at 1350 °C for 2 h are shown in Fig. 3. These 5 peaks, Ga 3d, Sc 2p, O 1 s, Zn 2p and Ga 2p peaks can be clearly seen in the full XPS spectrum in Fig. 3(a). And the reflection peaks at 19.8 eV, 530.5 eV, and 1044 eV binding energy in Fig. 3(c-d), are corresponding to Ga 3d, O 1 s, and Zn 2p, respectively. These means Sc existed as trivalent state in Sc-ZGO, and Sc³⁺ modification didn't affect bond valence of ZnGa₂O₄.

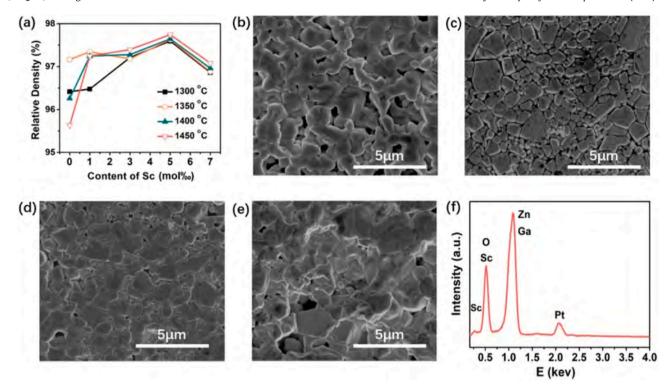


Fig. 1. (a) Relative density of Sc-ZGO, SEM images of Sc-ZGO sintered at 1350 °C for 2 h and (b-e) are 1Cr-ZGO, 3Cr-ZGO, 5Cr-ZGO, and 7Cr-ZGO, respectively. (f) EDS of 5Sc-ZGO.

3.3. Microwave dielectric properties

The microwave dielectric properties of Sc-ZGO sintered at 1350 °C for 2 h, have been investigated and the results are shown in Fig. 4. As is shown in Fig. 4(a), the Qxf values of Sc-ZGO are strongly

depend on Sc^{3+} modification. It reaches the maximum value of 124,147 GHz at 5Sc-ZGO, and then decreased with Sc^{3+} modification. According to our previous study, the Q imes f value of Sc-ZGO increased by almost 1.45 times compared with unmodified $ZnGa_2O_4$. Therefore, Sc^{3+} modification is an effective way to improve Q imes f values of

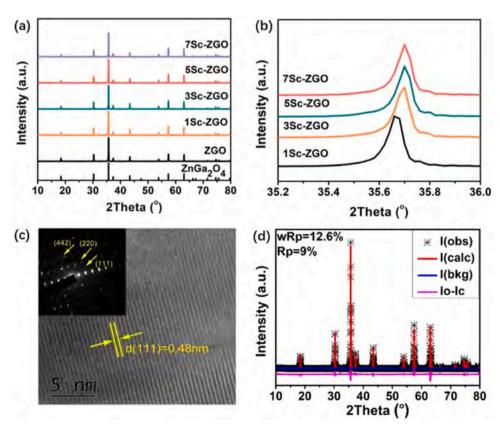


Fig. 2. (a) XRD pattern of Sc-ZGO sintered at 1350 °C for 2 h, (b) enlarged XRD patterns at 20=35.2-36.0, and (c) TEM image of 5Sc-ZGO. (d) XRD Refinement of 7Sc-ZGO.

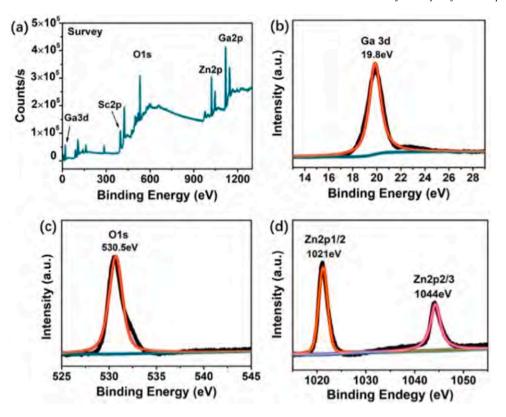
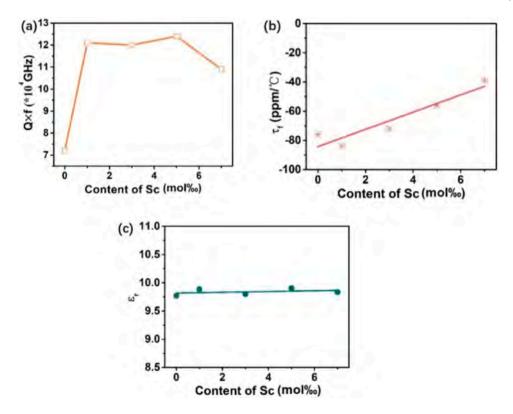



Fig. 3. XPS spectra of the middle part of ZnGa₂O₄ sintered at 1350 °C for 2 h, (a) full spectra, (b) Ga, (c) O, (d) Zn.

ZnGa₂O₄. As already shown in Fig. 1(a), the relative density of Sc-ZGO is increased with Sc^{3+} modification. It is reasonable to note that the $Q \times f$ values are higher for those ceramics with Sc^{3+} content range from 0.1 to 0.5 mol%, since higher density always benefits $Q \times f$.

Fig. 4(b) displays τ_f value of Sc-ZGO sintered at 1350 °C for 2 h. The τ_f is -71 ppm/°C for pure ZGO, and then it increases linearly to -39 ppm/°C with Sc³⁺ modification. Due to the decrease of $Q \times f$, further addition didn't apply to achieve near zero τ_f . Therefore, doping

Fig. 4. Effect of Sc^{3+} modification on the microwave dielectric properties of $ZnGa_2O_4$ sintered at 1350 °C for 2 h. (a) quality factor ($Q \times f$) at various sintering temperatures, (b) temperature coefficient at resonant frequency (τ_f), and (c) dielectric constant (ε_r).

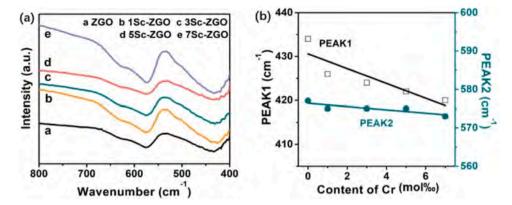


Fig. 5. (a) FT-IR spectra of Sc-ZGO, (b) the FT-IR peak positions and dielectric constant (ε_r) of the Cr-ZGO ceramics as a function of Sc content, sintered at 1350 °C for 2 h.

tiny $\mathrm{Sc^{3+}}$ (ppt) to improve both $Q \times f$ and τ_f , then applied magnetic ion such as $\mathrm{Mn^{2+}}$ or compounds like $\mathrm{TiO_2}$ to further shift τ_f can both achieve great microwave dielectric performance and keep cost down. ε_r follows Clausius–Mossotti equation which determined by polarizabilities and molecular volume as formula (3). Due to Sc doping content is tiny (from 0.1 mol% to 0.7 mol%), and the α_m of $\mathrm{Sc^{3+}}$ is similar with $\mathrm{Ga^{3+}}$. Thus, the ε_r of $\mathrm{Sc\text{-}ZGO}$ keeps steady with Sc modification.

$$\varepsilon_r = [3/(1-b\alpha_m/V_m)]-2 \tag{3}$$

3.4. FT-IR and Raman analysis on the spinel structure

FT-IR spectra of Sc-ZGO sintered at $1350\,^{\circ}\text{C}$ for 2 h is exhibited in Fig. 5(a). Two absorption bands: $420\,\text{cm}^{-1}$ (labeled as PEAK1) and $570\,\text{cm}^{-1}$ (labeled as PEAK2) were observed. Both PEAK1 and PEAK2 are belongs to $T_{1\,u}$ IR-active mode. These two $T_{1\,u}$ modes are induced predominantly by the vibrations of the octahedral site [30]. Hence, FT-IR spectrum can reflect the octahedral distortion in Sc-ZGO crystal structure. The absorption bands shift to lower wave number with Sc^{3+} content increasing which can be observed in Fig. 5(b), both for PEAK1 (from $434\,\text{cm}^{-1}$ to $420\,\text{cm}^{-1}$) and PEAK2 (from $577\,\text{cm}^{-1}$ to

 $573\,\mathrm{cm}^{-1}$). These two FT-IR peaks shift was sensitive to Sc^{3+} and shown linear correlation with Sc^{3+} concentration, which means FT-IR shift were caused by Sc modification. Cause FT-IR absorption demonstrate bond vibration, the linear correlation between Sc^{3+} modification and FT-IR shift reflects that Sc^{3+} modification effectively influence ZGO bond vibration.

Fig. 6(a) exhibits the Raman spectrum of Sc-ZGO. Two peaks: T_{2g} phonon mode at ~607 cm⁻¹ and A_{1g} phonon mode at ~712 cm⁻¹ can be clearly seen which is consistent with $ZnGa_2O_4$ Raman characterization reported by Wiglusz [31]. The two T_{2g} and A_{1g} phonon modes in Fig. 6(a) are the first order Raman modes. T_{2g} phonon mode is the breathing mode of the octahedral site, and A_{1g} phonon mode is the stretching vibration in the tetrahedral site, respectively.

For perovskite materials, the full width at half maxima (FWHM) of Raman phonon mode is indicative of the short-range cation ordering and can be used to explain $\tan\delta$ variety [22–35]. Perovskite materials with higher short-range cation ordering degree usually possess lower Raman FWHM and higher $Q \times f$. As perovskite and spinel materials have a similar crystal structure, it can be supposed that the $\tan\delta$ of spinel structured materials has a correlation with Raman FWHM. The FWHM of the A_{1g} , T_{2g} phonon modes and $\tan\delta$ of Sc-ZGO have been compiled in Fig. 6(b–c). The Raman shifts of the A_{1g} and T_{2g} phonon

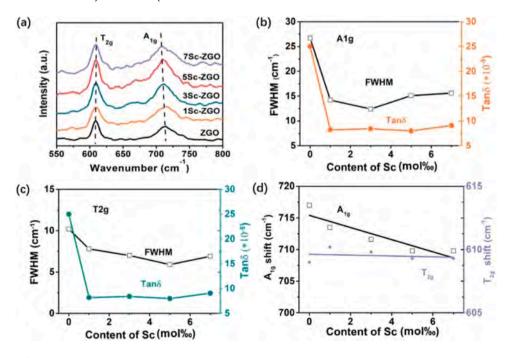


Fig. 6. (a)Raman spectra of Cr^{3+} modified $ZnGa_2O_4$, (b) FWHM value of the A_{1g} mode and dielectric loss ($tan\delta$), (c) FWHM value of the T_{2g} mode and dielectric loss ($tan\delta$), (d) A_{1g} shift and T_{2g} shift of Sc-ZGO ceramics as a function of Sc^{3+} concentration, sintered at 1350 °C for 2 h.

modes, and ε_r with increasing Sc³⁺ modification is compiled in Fig. 6(d). As FT-IR shift discussed above, these two Raman modes shift was sensitive to Sc³⁺ and shown linear relation with Sc³⁺ content, which means Raman modes shift was caused by Sc³⁺ modification. Cause Raman modes also demonstrate bond vibration, and have complementary relationship with FT-IR modes. The linear correlation between Sc³⁺ modification and Raman modes shift reflects that Sc³⁺ modification effectively influence ZGO bond vibration.

4. Conclusions

Sc-ZGO with excellent microwave dielectric properties have been successfully synthesized via solid state method. Due to the tiny modification concentration and ionic polarization, with Sc³⁺ modification, the ε_r of Sc-ZGO ceramics keeps steady. The Q×f value of Sc-ZGO ceramics ramp up to a maximum at 0.5 mol% Sc³⁺ modification and then ramp down continuously. In the Sc³⁺ content range from 0 to 0.7 mol%, Q×f increased from 83,000 GHz to 124,147 GHz and then decreased to 109,366 GHz. The τ_f value of Sc-ZGO increased linearly with Sc³⁺ concentration from -71 ppm/°C to -39 ppm/°C. Great microwave dielectric performance was achieved in 5Sc-ZGO spinel ceramics sintered at 1350 °C for 2 h: ε_r =9.9, $0 \times f$ =124,147 GHz, $\tan \delta$ =7.98 × 10⁻⁵, and τ_{ℓ} =-56 ppm/°C. The higher densification benefits the Qxf. However, Raman and FT-IR analysis on Sc3+ modified ZnGa₂O₄ further elucidated that when the relative density is almost the same, the short-range cation ordering degree is the dominant factor to O×f. The Raman and FT-IR shift further confirmed bond vibration induced by Sc^{3+} modification. The $tan\delta$ was found to follow closely with the FWHM of $A_{\rm 1g}$ and $T_{\rm 2g}$ modes, which represents the short-range cation ordering degree. The highest Q×f value for 5Cr-ZGO can be attributed to the highest short-range cation ordering degree and the highest density, while the decrease of O×f of 7Sc-ZGO can be ascribed to the decrease of short-range cation ordering degree and lower density. Thus, tiny Sc³⁺ (ppt) modification can greatly improve both $Q \times f$ and τ_f of $ZnGa_2O_4$ ceramics.

CRediT authorship contribution statement

Xiaochi Lu: Conceptualization, Methodology, Software, Validation, Data curation, Writing - original draft. Bin Quan: Investigation. Kailai Zheng: Resources. Peng Chu: Visualization. Jian Wang: Formal analysis. Guangxu Shen: Writing - review & editing. Qitu Zhang: Supervision. Feng Xu: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported in part by the open research fund of the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology (Grant Nos. KFJJ20180205, KFJJ20200204), the NUPTSF (Grant No. NY220125, NY218113, NY219077), the Opening Project of the State Key Laboratory of High-Performance Ceramics and Superfine Microstructure (Project no. SKL201 309SIC), and the Open Research Program Of State Key Lab. Of Millimeter Waves In Southeast University (K201928).

References

- [1] H. Ji, X. Hou, M.S. Molokeev, J. Ueda, S. Tanabe, M.G. Brik, Ultrabroadband red luminescence of Mn⁴⁺ in MgAl₂O₄ peaking at 651 nm, Dalton Trans. 49 (2020) 5711–5721
- [2] T.A. Safeera, J. Johny, S. Shaji, Y.T. Nien, E.I. Anila, Impact of activator incorporation on red emitting rods of ZnGa₂O₄:Cr³⁺ phosphor, Mater. Sci. Eng. 94 (2019) 1037–1043.
- [3] A. Saad, H. Shen, Z. Cheng, Q. Ju, M. Yang, Three-dimensional mesoporous phosphide-spinel oxide heterojunctions with dual function as catalysts for overall water splitting, ACS Appl. Energy Mater. 3 (2020) 1684–1693.
- [4] F. Gao, C. Chu, W. Zhu, X. Tang, H. Yi, High-efficiency catalytic oxidation of nitric oxide over spherical Mn Co spinel catalyst at low temperature, Appl. Surf. Sci. 479 (2019) 548–556.
- [5] D.H. Kim, S. Ning, C.A. Ross, Self-assembled multiferroic perovskite-spinel nanocomposite thin films: epitaxial growth, templating and integration on silicon, J. Mater. Chem. C 7 (2019) 9128–9148.
- [6] A. Sahu, R. Chaurashiya, K. Hiremath, A. Dixit, Nanostructured zinc titanate wide band gap semiconductor as a photoelectrode material for quantum dot sensitized solar cells, Sol. Energy 163 (2018) 338–346.
- [7] Z. Wei, G. He, W. Hu, Z. Feng, K. Jin, Anomalies of upper critical field in the spinel superconductorLiTi2O4–8, Phys. Rev. B 100 (2019) 184509.
- [8] K. Jin, G. He, X. Zhang, S. Maruyama, S. Yasui, R. Suchoski, Anomalous magnetoresistance in the spinel superconductor LiTi₂O₄, Nat. Commun. 6 (2015) 7183.
- [9] W.J. Bian, X.C. Lu, Y. Wang, H.K. Zhu, T. Chen, S.W. Ta, Q.T. Zhang, Correlations between structure and microwave dielectric properties of Co doped MgMoO₄ ceramics, Ceram. Int. 46 (2020) 22024–22029.
- [10] W.J. Bian, X.C. Lu, Y.Y. Li, C.F. Min, H.K. Zhu, Z.X. Fu, Q.T. Zhang, Influence of Nd doping on microwave dielectric properties of SrTiO₃ ceramics, J. Mater. Sci. Mater. Electron. 29 (2018) 2743–2747.
- [11] A. Kan, T. Moriyama, S. Takahashi, H. Ogawa, Cation distributions and microwave dielectric properties of spinel-structured MgGa₂O₄ ceramics, Jpn. J. Appl. Phys. 52 (2013) 09KH01.
- [12] S. Takahashi, A. Kan, H. Ogawa, Microwave dielectric properties and crystal structures of spinel structured MgAl₂O₄ ceramics synthesized by a molten-salt method, J. Eur. Ceram. Society 37 (2016) 1001–1006.
- [13] Y.C. Chen, H.M. You, K.C. Chang, Influence of Li₂WO₄, aid and sintering temperature on microstructures and microwave dielectric properties of Zn₂SnO₄ ceramics, Ceram. Int. 41 (2014) 5257–5262.
- [14] R.Z. Zuo, J. Zhang, J. Song, Y.D. Xu, Liquid-phase sintering, microstructural evolution and microwave dielectric properties of Li₂Mg₃SnO₆-LiF ceramics, J. Am. Ceram. Soc. 101 (2017) 569–576.
- [15] X.L. Jing, X.L. Tang, W.H. Tang, Y.L. Jing, H. Su, Effects of Zn2+ substitution on the sintering behaviour and dielectric properties of Li2Mg1-xZnxSiO4 ceramics, Appl. Phys. A 125 (2019) 415.
- [16] H.W. Chen, H. Su, H.W. Zhang, T.C. Zhou, B.W. Zhang, J.F. Zhang, X.L. Tang, Low-temperature sintering and microwave dielectric properties of (Zn_{1-x}Co_x)₂SiO₄ ceramics. Ceram. Int. 40 (2014) 14655–14659.
- [17] X.K. Lan, J. Li, Z.T. Zou, M.K. Xie, W. Lei, Improved sinterability and microwave dielectric properties of [Zn_{0.5}Ti_{0.5}]³⁺ doped ZnAl₂O₄ spinel solid solution, J. Am. Ceram. Soc. 102 (2019) 5952–5957.
- [18] S. Takahashi, A. Kan, H. Ogawa, Microwave dielectric properties and crystal structures of Mg_{0.7}Al_{2.2}O₄ and Mg_{0.4}Al_{2.4}O₄ ceramics with defect structures, J. Am. Ceram. Soc. 100 (2017) 3497–3504.
- [19] X.C. Lu, W.J. Bian, B. Quan, Z.F. Wang, H.K. Zhu, Q.T. Zhang, Compositional tailoring effect on ZnGa₂O₄-TiO₂ ceramics for tunable microwave dielectric properties, J. Alloy. Compd. 792 (2019) 742–749.
- [20] X.C. Lu, W.J. Bian, C.F. Min, Z.X. Fu, Q.T. Zhang, H.K. Zhu, Cation distribution of high-performance Mn-substituted ZnGa₂O₄ microwave dielectric ceramics, Ceram. Int. 44 (2018) 10028–10034.
- [21] X.C. Lu, Z.H. Du, B. Quan, W.J. Bian, H.K. Zhu, Q.T. Zhang, Structural dependence of microwave dielectric properties of Cr³⁺-substituted ZnGa₂O₄ spinel ceramics: crystal distortion and vibration modes study, J. Mater. Chem. C. 7 (2019) 8261–8268.
- [22] X.C. Lu, W.J. Bian, Y.Y. Li, H.K. Zhu, Z.X. Fu, Q.T. Zhang, Influence of inverse spinel structured CuGa₂O₄ on microwave dielectric properties of normal spinel ZnGa₂O₄ ceramics, J. Am. Ceram. Soc. 101 (2018) 1646–1654.
- [23] X.C. Lu, W.J. Bian, Y.Y. Li, H.K. Zhu, Z.X. Fu, Q.T. Zhang, Cation distributions and microwave dielectric properties of Cu-substituted ZnGa₂O₄ spinel ceramics, Ceram. Int. 43 (2017) 13839–13844.
- [24] S. Zhang, H. Sahin, E. Torun, F. Peeters, D. Martien, T. Dapron, N. Dilley, N. Newman, Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics, J. Am. Ceram. Soc. 100 (2017) 1508–1516.
- [25] M.T. Sebastian, Dielectric materials for wireless communication, J. Mater. Chem. 11 (2010) 54–62.
- [26] N. Udomkan, P. Limsuwan, T. Tunkasiri, Effect of rare-earth (RE = La, Nd, Ce and Gd) doping on the piezoelectric of PZT(52:48) ceramics, Int. J. Mod. Phys. B 21 (2009) 4549–4559.
- [27] J. Takahashi, T. Ikegami, K. Kageyama, Occurrence of dielectric 1:1:4 compound in the ternary system BaO-Ln₂O₃-TiO₂ (Ln = La, Nd, and Sm): II, reexamination of formation of isostructural ternary compounds in identical systems, J. Am. Ceram. Soc. 74 (1991) 1868–1872.

- [28] Hisakazu Takahashi, Yoko Baba, Kenichi Ezaki, Microwave dielectric properties and crystal structure of CaO-Li₂O-(1-x)Sm₂O₃-xLn₂O₃-TiO₂ (Ln: lanthanide)
- ceramics system, Jpn. J. Appl. Phys. 98 (1996) 5069–5073.

 [29] X.C. Fan, X.M. Chen, X.Q. Liu, Complex-permittivity measurement on high-Q materials via combined numerical approaches, IEEE Trans. Microw. Theory Tech. 53 (2005) 3130–3134.
- [30] S.P. Wu, J.J. Xue, R. Wang, J.H. Li, Synthesis, characterization and microwave dielectric properties of spinel MgGa₂O₄ ceramic materials, J. Alloy. Compd. 585 (2014) 542–548.
 [31] R.J. Wiglusz, A. Watras, M. Malecka, P.J. Deren, R. Pazik, Structure evolution and up-conversion studies of ZnX₂O₄:Er³⁺/Yb³⁺(X = Al³⁺, Ga³⁺, In³⁺) nanoparticles, Eur. J. Inorg. Chem. 6 (2014) 1090–1101.
- [32] M.S. Fu, X.Q. Liu, X.M. Chen, Erratum: giant dielectric response in two-dimensional charge-ordered nickelate ceramics, J. Appl. Phys. 105 (2008) 129902.
- [33] C.L. Diao, F. Shi, Correlation among dielectric properties, vibrational modes, and crystal structures in Ba[Sn_xZn_{(1-x)/3}Nb_{2(1-x)/3}]O₃ solid solutions, J. Phys. Chem. C 116 (2012) 6852-6858.
- [34] F. Shi, H. Dong, Correlation of phonon characteristics and crystal structures of Ba [Zn_{1/3}(Nb_{1-x}Ta_x)_{2/3}]O₃ solid solutions, J. Appl. Phys. 111 (2012) 1–5.
 [35] F. Shi, H. Dong, Correlation between vibrational modes and structural characteristics.
- acteristics of Ba[(Zn_{1-x}Mg_x)_{1/3}Ta_{2/3}]O₃ solid solutions, CrystEngComm 14 (2012) 3373-3379.